Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38546725

RESUMO

Patella caerulea (Linnaeus, 1758) is a mollusc limpet species of the class Gastropoda. Endemic to the Mediterranean Sea, it is considered a keystone species due to its primary role in structuring and regulating the ecological balance of tidal and subtidal habitats. It is currently being used as a bioindicator to assess the environmental quality of coastal marine waters and as a model species to understand adaptation to ocean acidification. Here, we provide a high-quality reference genome assembly and annotation for P. caerulea. We generated ∼30 Gb of Pacific Biosciences high-fidelity data from a single individual and provide a final 749.8 Mb assembly containing 62 contigs, including the mitochondrial genome (14,938 bp). With an N50 of 48.8 Mb and 98% of the assembly contained in the 18 largest contigs, this assembly is near chromosome-scale. Benchmarking Universal Single-Copy Orthologs scores were high (Mollusca, 87.8% complete; Metazoa, 97.2% complete) and similar to metrics observed for other chromosome-level Patella genomes, highlighting a possible bias in the Mollusca database for Patellids. We generated transcriptomic Illumina data from a second individual collected at the same locality and used it together with protein evidence to annotate the genome. A total of 23,938 protein-coding gene models were found. By comparing this annotation with other published Patella annotations, we found that the distribution and median values of exon and gene lengths was comparable with other Patella species despite different annotation approaches. The present high-quality P. caerulea reference genome, available on GenBank (BioProject: PRJNA1045377; assembly: GCA_036850965.1), is an important resource for future ecological and evolutionary studies.


Assuntos
Gastrópodes , Patela , Animais , Concentração de Íons de Hidrogênio , Anotação de Sequência Molecular , Água do Mar , Moluscos/genética , Cromossomos , Gastrópodes/genética
2.
Genome Biol Evol ; 11(2): 439-458, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649313

RESUMO

Why sex chromosomes turn over and remain undifferentiated in some taxa, whereas they degenerate in others, is still an area of ongoing research. The recurrent occurrence of homologous and homomorphic sex chromosomes in distantly related taxa suggests their independent evolution or continued recombination since their first emergence. Fishes display a great diversity of sex-determining systems. Here, we focus on sex chromosome evolution in haplochromines, the most species-rich lineage of cichlid fishes. We investigate sex-specific signatures in the Pseudocrenilabrus philander species complex, which belongs to a haplochromine genus found in many river systems and ichthyogeographic regions in northern, eastern, central, and southern Africa. Using whole-genome sequencing and population genetic, phylogenetic, and read-coverage analyses, we show that one population of P. philander has an XX-XY sex-determining system on LG7 with a large region of suppressed recombination. However, in a second bottlenecked population, we did not find any sign of a sex chromosome. Interestingly, LG7 also carries an XX-XY system in the phylogenetically more derived Lake Malawi haplochromine cichlids. Although the genomic regions determining sex are the same in Lake Malawi cichlids and P. philander, we did not find evidence for shared ancestry, suggesting that LG7 evolved as sex chromosome at least twice in haplochromine cichlids. Hence, our work provides further evidence for the labile nature of sex determination in fishes and supports the hypothesis that the same genomic regions can repeatedly and rapidly be recruited as sex chromosomes in more distantly related lineages.


Assuntos
Evolução Biológica , Ciclídeos/genética , Cromossomos Sexuais , Processos de Determinação Sexual , Animais , Feminino , Masculino
3.
Mol Phylogenet Evol ; 131: 138-148, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30468939

RESUMO

Accurate species delimitation is essential to properly assess biodiversity, but also for management and conservation purposes. Yet, it is not always trivial to accurately define species boundaries in closely related species due to incomplete lineage sorting. Additional difficulties may be caused by hybridization, now evidenced as a frequent phenomenon. The brittle star cryptic species complex Ophioderma longicauda encompasses six mitochondrial lineages, including broadcast spawners and internal brooders, yet the actual species boundaries are unknown. Here, we combined three methods to delimit species in the Ophioderma longicauda complex and to infer its divergence history: (i) unsupervised species discovery based on multilocus genotypes; (ii) divergence time estimation using the multi-species coalescent; (iii) divergence scenario testing (including gene flow) using Approximate Bayesian Computation (ABC) methods. 30 sequence markers (transcriptome-based, mitochondrial or non-coding) for 89 O. longicauda and outgroup individuals were used. First, multivariate analyses revealed six genetic clusters, which globally corresponded to the mitochondrial lineages, yet with many exceptions, suggesting ancient hybridization events and challenging traditional mitochondrial barcoding approaches. Second, multi-species coalescent-based analyses confirmed the occurrence of six species and provided divergence time estimates, but the sole use of this method failed to accurately delimit species, highlighting the power of multilocus genotype clustering to delimit recently diverged species. Finally, Approximate Bayesian Computation showed that the most likely scenario involves hybridization between brooders and broadcasters. Our study shows that despite strong incomplete lineage sorting and past hybridization, accurate species delimitation in Ophioderma was possible using a combination of complementary methods. We propose that these methods, especially multilocus genotype clustering, may be useful to resolve other complex speciation histories.


Assuntos
Equinodermos/classificação , Equinodermos/genética , Hibridização Genética , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial , Análise Discriminante , Geografia , Mitocôndrias/genética , Família Multigênica , Análise de Componente Principal , Especificidade da Espécie , Fatores de Tempo
4.
Evolution ; 72(11): 2553-2564, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30257042

RESUMO

Understanding how reproductive barriers evolve and which barriers contribute to speciation requires the examination of organismal lineages that are still in the process of diversification and the study of the full range of reproductive barriers acting at different life stages. Lake and river ecotypes of the East African cichlid fish Astatotilapia burtoni show habitat-specific adaptations, despite different levels of genetic differentiation, and thus represent an ideal model to study the evolution of reproductive barriers. To evaluate the degree of reproductive isolation between genetically divergent lake and river populations, we performed a mesocosm mating experiment in a semi-natural setting at Lake Tanganyika. We assessed reproductive isolation in the presence of male-male competition by analyzing survival and growth rates of introduced adults and their reproductive success from genetic parentage of surviving offspring. The genetically divergent river population showed reduced fitness in terms of survival, growth rate, and mating success in a lake-like environment. Hybrid offspring between different populations showed intermediate survival consistent with extrinsic postzygotic reproductive barriers. Our results suggest that both prezygotic (immigrant inviability) and postzygotic reproductive barriers contribute to divergence, and highlight the value of assessing multiple reproductive barriers acting at different stages and in natural contexts to understand speciation mechanisms.


Assuntos
Ciclídeos/genética , Hibridização Genética , Isolamento Reprodutivo , Animais , Comportamento Animal , Ciclídeos/fisiologia , Comportamento Competitivo/fisiologia , Ecossistema , Ecótipo , Feminino , Especiação Genética , Genética Populacional , Lagos , Masculino , Reprodução/fisiologia , Rios
5.
Ecol Evol ; 8(15): 7323-7333, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30151152

RESUMO

Adaptive phenotypic plasticity and fixed genotypic differences have long been considered opposing strategies in adaptation. More recently, these mechanisms have been proposed to act complementarily and under certain conditions jointly facilitate evolution, speciation, and even adaptive radiations. Here, we investigate the relative contributions of adaptive phenotypic plasticity vs. local adaptation to fitness, using an emerging model system to study early phases of adaptive divergence, the generalist cichlid fish species Astatotilapia burtoni. We tested direct fitness consequences of morphological divergence between lake and river populations in nature by performing two transplant experiments in Lake Tanganyika. In the first experiment, we used wild-caught juvenile lake and river individuals, while in the second experiment, we used F1 crosses between lake and river fish bred in a common garden setup. By tracking the survival and growth of translocated individuals in enclosures in the lake over several weeks, we revealed local adaptation evidenced by faster growth of the wild-caught resident population in the first experiment. On the other hand, we did not find difference in growth between different types of F1 crosses in the second experiment, suggesting a substantial contribution of adaptive phenotypic plasticity to increased immigrant fitness. Our findings highlight the value of formally comparing fitness of wild-caught and common garden-reared individuals and emphasize the necessity of considering adaptive phenotypic plasticity in the study of adaptive divergence.

6.
Mol Ecol ; 26(23): 6563-6577, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29087018

RESUMO

Genetic diversity is crucial for species' maintenance and persistence, yet is often overlooked in conservation studies. Species diversity is more often reported due to practical constraints, but it is unknown if these measures of diversity are correlated. In marine invertebrates, adults are often sessile or sedentary and populations exchange genes via dispersal of gametes and larvae. Species with a larval period are expected to have more connected populations than those without larval dispersal. We assessed the relationship between measures of species and genetic diversity, and between dispersal ability and connectivity. We compiled data on genetic patterns and life history traits in nine species across five phyla. Sampling sites spanned 600 km in the northwest Mediterranean Sea and focused on a 50-km area near Marseilles, France. Comparative population genetic approaches yielded three main results. (i) Species without larvae showed higher levels of genetic structure than species with free-living larvae, but the role of larval type (lecithotrophic or planktotrophic) was negligible. (ii) A narrow area around Marseilles, subject to offshore advection, limited genetic connectivity in most species. (iii) We identified sites with significant positive contributions to overall genetic diversity across all species, corresponding with areas near low human population densities. In contrast, high levels of human activity corresponded with a negative contribution to overall genetic diversity. Genetic diversity within species was positively and significantly linearly related to local species diversity. Our study suggests that local contribution to overall genetic diversity should be taken into account for future conservation strategies.


Assuntos
Distribuição Animal , Biodiversidade , Variação Genética , Genética Populacional , Invertebrados/classificação , Animais , Organismos Aquáticos/classificação , Geografia , Larva , Mar Mediterrâneo
7.
C R Biol ; 337(10): 553-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25282170

RESUMO

Cryptic species are numerous in the marine environment. The brittle star Ophioderma longicauda is composed of six mitochondrial lineages, encompassing brooders, which form a monophyletic group, and broadcasters, from which the brooders are derived. To clarify the species limits within O. longicauda, we compared the reproductive status of the sympatric lineages L1 and L3 (defined after sequencing a portion of the mitochondrial gene COI) during the month of May in Greece. In addition, we genotyped a nuclear marker, intron i51. Each L3 female was brooding, whereas all L1 specimens displayed full gonads, suggesting temporal pre-zygotic isolation between brooders and broadcasters. Statistical differences were found among lineages in morphology and bathymetric distribution. Finally, the intron i51 was polymorphic in L1 (60 individuals), but monomorphic in L3 (109 individuals), confirming the absence of gene flow between brooders and broadcasters. In conclusion, the broadcasting lineage L1 and the brooding lineage L3 are different biological species.


Assuntos
Equinodermos/classificação , Equinodermos/genética , Equinodermos/fisiologia , Reprodução , Estações do Ano , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , Feminino , Fertilização , França , Fluxo Gênico , Genótipo , Gônadas/anatomia & histologia , Gônadas/crescimento & desenvolvimento , Grécia , Íntrons/genética , Masculino , Mar Mediterrâneo , Filogenia , Análise de Sequência de DNA/veterinária
8.
Protist ; 165(5): 645-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25150612

RESUMO

Ribosomal DNA is commonly used as a marker for protist phylogeny and taxonomy because of its ubiquity and its expected species specificity thanks to the mechanism of concerted evolution. However, numerous studies reported the occurrence of intragenomic (intra-individual) polymorphism in various protists and particularly in Foraminifera. To infer to what extent the SSU rDNA intragenomic variability occurs in Foraminifera, we studied 16 foraminiferal species belonging to single-chambered monothalamids and multi-chambered Globothalamea, with one to six individuals per species. We performed single-cell DNA extractions and PCRs of a 600bp fragment of SSU rDNA, and sequenced 9 to 23 clones per individual for a total of 818 sequences. We found intragenomic variability in almost all species, even after excluding singleton mutations. Intra-individual sequence divergence ranged from 0 to 5.15% and was higher than 1% in 11 species. Variability was usually located at the end of stem-loop structures and included compensatory single nucleotide polymorphisms and expansion segments polymorphisms. However, the polymorphisms did not change the secondary structure of the rRNA. Our results suggest a non-concerted evolution of rRNA genes in Foraminifera. The origin of this variability and its implications for species identification in environmental DNA studies are discussed.


Assuntos
DNA de Protozoário/genética , DNA Ribossômico/genética , Foraminíferos/classificação , Foraminíferos/genética , Variação Genética , RNA Ribossômico 18S/genética , Análise por Conglomerados , DNA de Protozoário/química , DNA Ribossômico/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Análise de Sequência de DNA
9.
C R Biol ; 336(11-12): 572-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24296081

RESUMO

Global warming is expected to change marine species distributions; it is thus critical to understand species current thermotolerance. The brittle star species complex Ophioderma longicauda comprises a broadcast spawning lineage L1 and a brooding lineage L3. We collected L1 specimens from Marseilles and Crete, and L3 specimens from Crete. We monitored survival, autotomy and arm regeneration at 17, 26 and 30°C during 14 weeks. Globally O. longicauda showed good resistance to elevated temperatures compared to other published studies on ophiuroids. The L3 sample displayed a better thermotolerance than L1 samples. Yet, more research is needed to establish whether these differences are due to lineages, geographic origin, or random effects. We provided for the first time individual regeneration trajectories, and showed that regeneration followed a growth curve and was highly influenced by temperature in both lineages. Our results highlight the importance of taking into account the presence of cryptic species when studying the potential effects of global warming.


Assuntos
Regeneração/fisiologia , Estrelas-do-Mar/fisiologia , Algoritmos , Animais , França , Geografia , Aquecimento Global , Grécia , Temperatura Alta , Cinética , Região do Mediterrâneo , Estrelas-do-Mar/genética , Estrelas-do-Mar/crescimento & desenvolvimento , Sobrevida , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...